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A REVISED MODIFIED PARALLEL ANALYSIS (RMPA) FOR
THE CONSTRUCTION OF UNIDIMENSIONAL ITEM POOLS

ABSTRACT

Modified Parallel Analysis (MPA) is a heuristic method for assessing “approximate
unidimensionality” of item pools. It compares the second eigenvalue of the observed
correlation matrix with the corresponding eigenvalue extracted from a “parallel” matrix
generated by a unidimensional and locally independent model.

Revised Modified Parallel Analysis (RMPA) generalizes MPA and alleviates some of its
technical limitations. An important and useful feature is a new method for eliminating items
which violate the test's unidimensionality. This is achieved by eliminating items, one at a
time, to determine their contribution to the matrices' eigenvalues.

We propose a test for detecting items with larger impact in the observed data set, and

.. eliminating them. The new method was tested in several simulations in which unidimensional
item pools were "contaminated” by various proportions of items from a secondary pool. The
results indicate that RMPA does an excellent job in detecting low (10%) and moderate (25%
levels of contamination, but fails in cases of maximal (50%) contamination.
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A REVISED MODIFIED PARALLEL ANALYSIS (RMPA) FOR TR
CONSTRUCTION OF UNIDIMENSIONAL ITEM POOLS

The increasing popularity of Item Response Theory (IRT) (e.g. Hambleton, 1983; Hulin,
Drasgow & Parsons 1983; Lord. 1980) in educational, personnel and psychological testing
has caused a revolution in this domain. Though multidimensional item response models have
been developed (e.g. Reckase, 1985; Sympson, 1978), most readily applicable IRT models
used today assume that the test takers responses to all items depend on a single latent trait
(ability). Thus, it is crucial to establish that any item used in estimating the examinee’s
position along this ability continuum measures, in fact, the same trait. In other words, the
need to demonstrate that a given item pool is truly unidimensional is a necessary condition for

many applications of IRT.

Defining and Assessing Unidimensionality

Consider a test consisting of n items selected from a larger item pool. Let ffi be the vector of n
binary responses to the test's items (taking values of 1 and 0 for correct and incorrect
response, respectively), generated b);the ith test taker (i=1...N), and let Uij be her response

to the jth item (j=1...n). Finally, let 8;be a vector of t latent traits characterizing the

examinee's abilities. The strong principle of local independence (McDonald, 1981) states that:

n
P (Ui = uil6;) = [T Pj(Uj; = uijl 8) (1)
jo!

This principle asserts that the responses to any pair of itemns are statistically mutually
independent for any individual, or any subpopulation with fixed latent traits. The
dimensionality of U is, simply, the minimal number of latent traits necessary to produce a
(strong) locally independent model for U. Thus, a pool is unidimensional if responses to all its
itemns can be produced by unidimensional locally independent models.

Although a voluminous literature exists on the issue of unidimensionality of items and tests
(see Berger and Knol, 1990; Hattie, 1984 and 1985 for partial reviews), currently there is no
single approach which is fully satisfactory and/or universally accepted. Hattie (1984)
compiled a list of 87 measures of unidimensionality and classified them into five
nonoverlapp'mg classes according to their underlying rationale. He distinguished between
indices based on




(i) closeness to specific answer patterns,
(ii) reliability coefficients,

(iii) principal components (PO),

(iv) factor analysis (FA) and

(v) goodness of fit to various IRT models.

Hattie questioned the theoretical rationale of indices based on response patterns and reliability
and showed empirically that the measures based on PC, FA and one parameter IRT (the Rasch

model) are outperformed by methods quantifying deviation from multi-parameter IRT models.

“Approximate” Unidimensionaliry

Many researchers have argued, based on theoretical and empirical observations, that purely
unidimensional tests, or pools, are quite rare ( e.g. Ackerman, 1989; Humphreys, 1985;
Reckase, Ackerman & Carlson, 1988; Traub, 1683 Yen, 1984, 1985). If, in fact,
unidimensiorality is frequently violated it is important to determine the practical implications of
such violations. Following Reckase's original work (1979), several researchers (e.g.
Drasgow & Parson, 1983; Yen, 1984, 1985) have shown that unidimensional models are
quite robust under multidimensionality as long as there is a single "dorninapt" factor, and

item difficulty is not confounded with dimensionality.

These, and other similar, studies suggest that strict unidimensional pools are not necessary for
many practical applications of unidimensional IRT models (e.g. CAT). Itis, however,
important to develop methods that can identify pools which deviate from strict
unidimensionality to a degree which does not seriously affect the fit or accuracy of the
unidimensional IRT model.

This is the motivation behind recent work by Stout, who developed a test of the essential
unidimensionality o a data set (Stout, 1987,1990; Nandakumar, 1991). Essential
independence is achieved if the mean covariance (conditional on é’i, the test taker's vector of t
latent traits) between all n(n-1)/2 pairs of items approaches 0 as the number of items increases
to infinity, and the essential dimensionality of a pool is the smallest number of latent traits
necessary to satisfy essential independence. Essential independence is a weaker requirement
than strong local independence and, in practice, it is obtained whenever there is a single
dominant dimension in the data (e.g. Nandakumar, 1991).

d
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In the same spirit Drasgow and Lissak(1983) presented Modified Parallel Analysis (MPA for
short) as "a technique that can determine when an item pool is sufficiently unidimensional for
the use of IRT" (Drasgow and Lissak, 1983, page 365). Modified Paralle! Analysis relies on
FA, a well understood method which is widely available to users in most statistical packages.
Thus, it is (conceptually and computationally) easier to use than Stout's methods. This study

will develop a revised and improved version of MPA.

Parallel and Modified Parallel Analysis
Parallel Analysis (PA) was proposed by Hom (1965) as an alternative to traditional factor

analytical methods for identifying the number of latent factors. (e.g. Kaiser, 1960, Cattell,
1966, Bartlett, 1950).

The rationale behind PA is intuitively compelling, and its application is simple and
straightforward: Random correlation matrices are generated, and their eigenvalues are
extracted and averaged. The eigenvalues of the actual correlations are compared to these
means and those factors with eigenvalues larger than their counterparts from the

randomly generated data are retained. Crawford and Koopman (1973), Humphreys and
Montanelli (1975) and Zwick and Velicer (1986), among others, report that PA works well in
both Principal Components (PC) and Factor Analysis (FA). Recently Longman, Cota, Holden
and Fekken (1989) published regression equations that eliminate the need to actually generate

random matrices for each PA (for the PC case).

Parallel Analysis is used to determine the true dimensionality of a given data set, whereas in
most applications of IRT models one seeks to determine whether a data set deviates
significantly from unidimensionality. Modified Parallel Analysis (Drasgow & Lissak, 1983)
provides an ingenious way of answering this question, uging the rationale of PA. Its basic

stages are:

(1) The intercorrelations (preferably tetrachoric) of the test's items are factor analyzed and the
eigenvalues of the unrotated solution are calculated.

(2) A “parallel” unidimensional data set is generated by an IRT model. This data set parallels
the observed one along all its attributes: It has an equal number of examinees with identical
abilities, and it has the same number of items with identical parameters. Since responses
are generated by an unidimensional IRT model satisfying the strong local independence
principle the data set is, by definition, unidimensional.
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(3) The (tecrachoric) correlations of the parallel data set are factor analyzed, and the

eigenvalues of the unrotated solution are calculated.

(4) The dimensionality of the pool is assessed by comparing the magnitude of the second
eigenvalues of the two data sets: If the empirical value is "sufficiently close” to the one

obtained from the parallel data set, the pool is considered unidimensional.

Drasgow and Lissak (1983) reported five empirical studies providing strong empirical support

for the procedure.

Eigenvalue based factor analytical techniques are not always successful in recovering the true
dimensionality of binary data and, consequently, can't always distinguish between
unidimensional and multidimensional data sets (e.g. Collins, Cliff, McCormick and Zatlin,
1986: Hattie, 1984; Knol and Berger, 1991; Roznowsky, Tucker & Humphreys, 1991;
Zwick and Velicer, 1986). Thus it may seem surprising that some of the same measures
perform very well in the framework of PA, and MPA. It is important to stress that the key to
the success of these methods is their comparative nature. Whatever deficiencies these statistics
have, they affect equally the resu'ts of the two data sets. Both PA and MPA focus on, and
highlight, whatever differences exist between the empirical and parallel data sets above and
beyond the systematic biases that the FA based measures may share.

Thus, in Hattie's (1984) typology MPA should not be considered a "factor analytic approach”.
In fact, it is closer to the "measures of fit to IRT models". MPA is a general method for
assessing the similarity, or closeness, between two parallel data sets (one of which is known
10 be unidimcnsional).In this case similarity is quantified by some of the statistics usually
employed in FA.

A critique of MPA
Modified Parallel Analysis suffers from a few technical limitations. In this section we
describe these limitations and the problems they may cause in apolying the method:

(i) MPA is a randomized procedure, i.c. its results depend to a certain degree on a random
process, namely, the selection of the parallel data set. Thus, with small enough samples,
researchers applying exactly the same procedure to the same set of data may reach different
conclusions because of the variance between the random data sets generated in their

simulations.
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(ii) The simulated and the empirical data sets are equated along most important dimensions and
any discrepancy berween their eigenvalues can ,supposedly, be attributed to the
multidimensionality of the empirical matrix. Yet, the communalities are estimated in a
purely empirical fashion separately for each data set, introducing another important
difference between them. This factor may bias (in an unknown direction and to an

unknown degree) the comparative analysis.

(iii) MPA is a heuristic procedure, i.e. it lacks a measure of sampling variability for the formal
assessment of the closeness of the critical statistic (the second eigenvalue) obtained from

the unidimensional and the empirical solutions.
Other important limitations of MPA are:

(iv) It compares only the second pair of eigenvalues of the two matrices. This choice lacks a
solid theoretical or empirical justification, and it may miss differences between the other
eigenvalues (especially the third).

(v) MPA is too limited in its scope. The technique provides a global omnibus test of the
hypothesis concerning the pool's unidimensionality. It lacks, however, a mechanism to
follow up rejections of the hypothesized pattern, by eliminating some items and identfy a
unidimensional subset of the pool.

A REVISED MODIFIED PARALLEL ANALYSIS (RMPA)

In this section we outline a revised procedure (RMPA) which extends and generalizes the
MPA. The revised method offers solutions to the technical problems described above
and incorporates them into the existing framework of MPA. RMPA also includes a second
stage which allows one to extract unidimensional subsets from larger, potentially
multidimensional, pools.

~
To solve the first problem we replace the random generation of a parallel unidimensional
population by the theoretical derivation of the expected correlations under the assumptions of
(1) local independence, (2) unidimensionality of the parameter space and (3) the three
parameter logistic model (e.g. Lord, 1980). The probability of a correct response for item § by
a test taker with (a single) ability 8; is given by P(Uj; = 11 8y) or, in a shorter notation, P,.

L= .
T +exp{-1.7a(8i- b)) =)

8

Pji=c¢j+




where a, is the item’s discrimination parameter, bj is the item's difficulty and ¢, is its pseudo-
guessing probability (see Hambleton, 1983 or Lord, 1980 for details). Under these
assumptions the expected number of correct answers to any pair of arbitrary items, j and k, in

a random sample of N examinees is:

N N
fj= > Pjiand fx= 3 Py ' 3)

i=1 i=1

Under the assumption of local independence, the expected number of correct answers to both

items, j and k, is:
N
fjk= 2 PjiPki- 4)

i=1

Given fjk and the two marginals, fJ and f, the expected 2x? ~ontingency table can be
constructed, and the expected tetrachoric correlation can be estimated by standard methods
(e.g. by solving a polynomial using the Newton Raphson method, as suggested by Kendall &
Stuart 1979, pages 324-327). All expectations are (as in the original MPA) conditional upon
the abilities and item pararneters shared by the two data sets. The calculation can be further
refined when the true distribution of the unidimensional abilities (8;) in the population is
known. In these cases, the summation is replaced by integration over @ of the probability
density function of 8;.

To solve the second probiem we replace the separate estimatioa of the communalities in the
two data sets by the expected tetrachoric correlation between (hypothetical) experimentally
independent administrations of any item under th. assumptions of (1) local independence,

(2) unidimensional ability and (3) a three parameter logistic item curve. This procedure
amounts to estimating the iterns' communalities by their expected test-retest reliabilities. It is
well known (e.g. Lord & Novick, 1968; Mulaik, 1972) that a measure's reliability provides an
upper bouad to its communality. The estimation procedure is just a special case of the

technique described above for the calculation of the expected correlation. More specifically, if
we let j=k, Equation 4 is reduced to:

(4a)

t:"":
il
M z
=%




The solution of the third problem relies on a data analytic procedure known as "jacknifing"
(see Arvesen and Salsburg, 1975, Miller, 1974 or Mosteller & Tukey, 1977 for partial
reviews) |. Assume that the original nxn correlation matrix between the test's items is strictly
unidimensional. By eliminating oue item at a time (i.e. deleting a row, and the corresponding
column, from the original matrix) we obtain n submatrices of order (n-1)x(n-1) which, by
definition, are also unidimensional. It is easy to show that under the “one factor model” (i.e. a
matrix of rank one), the average first eigenvalue of these n submatrices, scaled by a factor of r/

(n-1), is an unbiased estimate of the first eigenvalue of the original intact matrix.

A useful and important consequence of the “eliminate one item at a time” procedure is that it
provides a simple method for assessing the impact, or influence?, of any single item on the
test's eigenvalues. The logic of the MPA procedure predicts that, under unidimensionality, the
two matrices will have equal eigenvalues. It is generally accepted, and it was confirmed
empirically by Drasgow & Lissak(1983), that the first eigenvalue (),) is approximately equal
in the observed and the expected matrices, regardless of the dimensionality of the observed

responses. Thus, except for sampling error, the ratio of the two eigenvalues, RL , should be:
RL = Ai(observed)/ Aj(expected) =1 . (5)

Furthermore, under unidimensionality, the eigenvalues of the n submatrices of the two data
sets will be similar, will have equal variances and will be highly correlated. Finally, the
removal of any given item from the pool will affect the observed and the expected data sets in
identical fashion and to an equal degree. Thus, equality (5) should also hold in all n
submatrices obtained by eliminating one item at a time. Let A;’ be the first eigenvalue of the
submatrix obtained after the deletion of item i, and let RL}' be the ratio of the eigenvalues from
the two parallel data sets. Then, for all items (i=1...n), the ratio of the jacknifed

eigenvalues should equal the ratio of the original values:

RL}' = A (observed)/A; (expected) =RL, . (6)
If the responses are unidimensional, similar results are expected to hold for the second, third,
and all subsequent eigenvalues. If, on the other hand, the observed responses violate

unidimensionality, the analysis of the two data sets should yield differential results. For
example, Drasgow and Lissak(1983) based the original MPA on the prediction that the second

i0
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eigenvalue of the observed matrix will be larger than its counterpart from the parallel

unidimensional data set:
RL,= xz(obscrved)/ xz(expected) >l . (7)

If the data are generated by a multidimensional model we expect the mean of the n second
eigenvalues extracted from the observed submatrices to be larger, and their variance to

be higher, than their counterparts from the expected data set. Depending on the type and
degree of deviation from unidimensionality, the correlation between the observed and
expected values can be low (or even negative). Furthermore, the eigenvalues of the observed
responses will be more sensitive to the removal of the foreign (or "contaminating”) items.
Since the expected matrix is unidimensional, its eigenvalues should not be affected
considerably when any arbitrary item is removed. However, when a contaminating

item is removed from a multidimensional test, the data set becomes closer to unidimensionality
and its eigenvalues should decrease. For example, in a test of length n=50 with 8 foreign
items (8/50=16% contamination), after the removal of such an item, the level of contamination
is reduced to (7/49=)14%. Thus, whenever a contaminating item is eliminated the matching
eigenvalues should be more similar to each other than in those cases in which a regular
(noncontaminating) item is removed. Consequently, the ratio of the eigenvalues should be

closer to unity in these instances.

To summarize, for any given data set, the ratio between the first eigenvalues, RL,, in the two
data sets can be used as a bnchmark against which one can assess and test the ratios derived
from the second and third eigenvalues (RL, and RL,, respectively). At the global (i.e. test or
pool) level, this approach is attractive because the behavior of RL, and RL, is assessed bya
data based index which is more sensitive to, and reflects, the peculiarities and idiosyncrasies of
the specific test being examined. At the local (i.e. item) level, this procedure provides a natural
way of ranking, and scaling, the items accdrd'mg to their deviation from the pattern expected
under unidimensionality. These properties can be used to develop a procedure for testing the
global dimensionality of the observed responses, and a method of selecting uvidimensional
pools. In the next section we describe the technical details of such a testing procedure.

The "gap tes.’
To facilitate the comparison of the two data sets we calculate, for all items (i=1...n) and for the
first k eigenvalues (k=1,2,3), the ratio of the two matched cigenvalues:

RL;: = lﬁ(observcd)/ X{‘i(expcctcd) . (8)

11
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The global ratio RL, as well as the individual RL'li (i=1..n), are insensitive to the
dimensionality of the observed data set. Their empirical distribution will be used to test the
hypaochesis that the ratios of the second and third eigenvalues behave similarly. Formally, we
wish to test that F{RLI‘;} = F{RL'l‘}, and F{RL},i} = F{RL'li}. where F{'} stands for the
distribution of the relevant statistic. The alternative hypothesis is that the ratios are distributed
differentially.

We are particularly interested in the case where an essentially unidimensional data set is
contaminated by a second (sometimes called "nuisance") ability. We speculated earlier, that
removal of such contaminating items will «ffect differentially the two matched eigenvalues.
When analyzing the correlations from the observed responses we expect to observe two
distinct clusters of eigenvalues --- from the unidimensional and the contaminating pool,
respectively --- separated by a substantial gap". No parallel clustering and separation is

expected in the corresponding eigenvalues of the matrix of expected correlations.

To detect such unusual gaps we adopt a procedure described by Wainer and Schacht (1978) to
detect unusually large gaps in strings of ordered values. The first step in this procedure is to
rank order the values in descending order and to calculate the (n-1) gaps, g;, by subtracting
each observation from the immediately previous (i.e. larger) one. The gaps are then weighted
by a set of logistic weights to yield weighted gaps, y,. These weights were selected to account
and compensate for the fact that, typically, observations are more dense (hence should be
overweighted) near the center and more sparse (and should be underweighted) in the tails of
the distribution. Formally:

yi=Yi(n-0)8 . 9

Finally, these values are standawzed by division by y _, the midmean (i.e. the mean of the
central 50% values) of the weighted gaps. Thus, tne standardized weighted gaps (SWGs
for short), Z,can be expressed as:

z=y/ly . (10)

Zero gaps indicate that two adjacent observations are equal, and unit gaps indicate .at the
distance between two observations is equal to the gaps' midmean. By definition, all gaps are

non-negative but are unbounded from above. Wainer and Schacht (1978) suggest that z,

values greater than 2.25 indicate "unusually” large gaps. The probability of observing gaps
this wide by chance is approximately 0.03 under the normal distribution, but this value was *

ERIC 12
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shown by Wainer and Schacht (1978) to work quite well for a variety of symmetric t
distributions with tails larger than the normal.

We will use this procedure to detect the location of the gap separating the items from the two
pools, on the basis of ratios of the matched eigenvalues, RL{‘i (k > 1). Thus, the hypothesis
will be tested by comparing MAX(Z, ), the largest SWG, with a critical rejection threshold.
However, in the absence of precise information regarding the form of the distribution of these
ratios, and the multiplicity of tests involved, it is not sufficient to rely on the 2.25 universal
rule of thumb proposed by Wainer and Schacht. Instead, we find it necessary to develop more

cuaservative rejection rules .

There are various ways of deriving critical rejection points for this decision: one can estimate
the desired percentiles (.01, .05, etc.) from the distribution of RL]i. or use a version of
Chebyshev inequality (e.g. Stuart and Ord, 1987, page 110). The regular Chebyshev
inequality states that the probability of finding a value located more than K standard deviations
(SDs) from the population's mean is smaller than 1/K?, for any distribution with finite
moments; A tighter version, invoking the additional assumptions that the distribution is

symmetric and unimodal, yields a lower upper limit (4/9K?), for the probability of the same

event 3.

The decision, to reject Ho' will be based on a comparison with a critical threshold, T(zl). The
threshold is derived from the distribution of the ratios of the first eigenvalue, RL‘li, in the same
data set. Specifically, for k=2,3 we will reject H, if:

MAX(Z,)>T(z)) = M, +KS))

where M, and S, are the mean and SD, respectively, of the SWGs, z,, calculated from the
ratios of first set of matched eigenvalues, RL}.

If MAX(zm) and/or MAX(zﬁ) > T(zl). i.e. there is a significant gap in either distribution of
ratios, we can eliminate those items which are located above the significant gap(s)‘. Letm,
denote the number of itemns eliminated (m, > 0) after this first pass through the data. Repeat
the whole process with the reduced (n-ml)X(n-ml) correlation matrices. This second analysis
may lead to the elimination of additional (say m,) items. Repeat the procedure with the

remaining items, and stop when the test fails to detect items to be rejected.

13
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AN EMPIRICAL STUDY OF RMPA

Method

In this section we report results of an empirical study designed to test RMPA. Like most other
studies in this area we simulated artificial test results by combining real item parameters and a
set of reasonable assumptions regarding the distribution of abilities in the population of test
takers. For the purpose of this study we contaminated a large unidimensional pool by (various
proportions of) responses generated by a second (nuisance) ability correlated (at various
levels) with the first. The efficiency >f the RMPA was assessed by its ability to identify
corectly the contaminating items and, consequently, partition the test into its two basic

components.

We expect this procedure to be most efficient in cases of approximate unidimensionality. In
other words, it should-detect accurately relatively low levels of contamination, but not mixtures
of two (equal) abilities. We also predict that the accuracy of the detection will be inversely

related to the correlation between the two abilities involved.

Design

We generated 20 distinct "artificial tests”. The following characteristics were fixed for all the
tests:

n = test length = 80 items;
N = sample size = 2000 examinees;
t = number of abilities = 2.

The following variables were manipulated across tests:

p = proportion of contaminating items = 0%, 10%, 25% or 50% (p=0% is a a strictly,
uncontarninated, unidimensional test and the other three cases represent low, medium
and high levels of contamination);

r = the comrelation between 6, and 6,, the two abilities = 0.0, 0.5, 0.7 (the three values are
approximately equally spaced in terms of ).

Replications: All combinations of p and r were replicated twice (i.e. with different seeds for
the generation of the abilities, and different item parameters). In the sequel the two replications
are labeled "B" and "R". 14
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With the exception of the control condition (p=0, r=0), this can be viewed as a 3 x 3 factorial

design repeated twice.

Ite

The items for half the tests (replication "R") were randomly selected from the item bank of a
test of English as a Foreign Language (EFL). This test was developed and is routinely used
by the National Institute for Testing and Evaluation (NITE) as part of the Psychometric
Entrance Test (PET) which is administered to all applicants to universities in Israel. The item
parameters were estimated under the three parameter logistic model (Equation 2) using
responses from approximately 7,000 examinees who took the test in 1988. The estimation
was performed using the NITEST parameter estimation program (Cohen & Bodner, 1989).
These parameter estimates for the n=80 items will henceforth be referred to as “true

parameters"”.

The items for the other 10 tests (replication "B") were generated artificiaily, according to some
distributional assumptions: The discrimination parameters (a's) were sampled from a normal
distibution with a mean of 1.1 and a s.d. of 0.3; The difficuity parameters (b's) were
obtained from a normal distribution with a mean of 0 and a s.d. of 0.8; The pseudo-guessing
parameters (c's) are taken from a uniform distribution over the range 0.1 - 0.3. The values of

the three parameters were sampled, from the respective sources, independently.

Table | summarizes the information regarding the two sets of true parameters. The two tests
are equally difficult, but vary with respect to other aspects. The discrimination parameters of
the real items ("R") have a higher mean and variance (m,=1.33 and s,70.51) than the artificial
ones ("B") (ma=1 .12 and sa=0.25). On the average, it is easier to guess in the artificial test
(mc=0.2 vs. 0.16). Finally, whereas the parameters of the artificial items are uncorrelated (by

design), the values of the EFL items parameters ar¢ moderately correlated.

Insert Table 1 about here

15
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Abilit

All sarnples include N=2000 simulated “respondents”. First we generated four mutually
uncorrelated sets of abilities (T, A}, A, and A,): We sampled 8000 independent observations
from the standard (0,1) normal distribution and randomly assigned them to the four sets.

Correlated abilities were generated by calculating:
Tr)=r-T+ V1-12 A (1

where A, stand for A, A,or A, and r is the desired correlation (0.0, 0.5, 0.7) between the
new set of abilities, T(r), and the reference set, T. Thus T(0), T(.5), T(.7) are sets of N=2000
normally distributed abilities which correlate 0.0. 0.5 and 0.7, respectively, with T.

Responses

Four sets of unidimensional response vectors were generated. Each set was simulated with a
different set of abilities {T, T(0), T(.5) or T(.7)}, and all responses were generated with the
“true” item parameters. The response vectors were simulated with the NITECAT software
package (Cohen, Bodner & Ronen, 1989), which implements the process described by
Drasgow and Lissak (1983).

The vectors generated with the T abilities are considered the "original" responses based on the
dominant ability. Contaminated responses were obtained by replacing the original responses
on p% of the items (randomly selected) with the comresponding responses generated by one of
the other samples of abilities. Note that for the case of r=0 this procedure simulates a two-
dimensional "noncompensatory” model (e.g. Ackerman, 1989, Sympson, 1978), whereas the

other cases (r > 0) simulate "compensatory” models (e.g. Ackerman, 1989, Reckase, 1985).

P N
In each of the artificial tests the three parameters of the n=80 items were estimated with the
NITEST program (Cohen & Bodner, 1989). These are the various sets of "estimated

parameters", to be used in the generation of the expected correlations.

Consistent with the massive literature on this topic (e.g. Dorans & Kingston, 1985; Miller &
Oshima, 1992; Oshima & Miller, 1992), we found that the estimates of the b's and c's were
not affected by the contamination. However, the estimates of the a's (the discrimination
parameters) are sensitive to the level of contamination. Consistent with other studies in the
literature, the estimates for items loaded on the dominant ability are hardly affected, whereas

the discrimination measures of the contaminating items are reduced considerably. The
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magatitude of this "shrinkage" is related to the level of contamination and the correlation

between the two factors.
Results

Standard MPA
The standard MPA procedure, prescribed by Drasgow and Lissak (1983), was performed.
Table 2 summarizes the results of this analysis. The table displays the first

three eigenvalues of both correlation matrices, as well as their ratios.

Insert Table 2 about here

There is a clear and consistent pattern in the data which can be summarized by three

observations:

(i) The first eigenvalues are, practically, equal in the two matrices and their ratio is,
essentially, 1. There are no discernible differences between the 18 contaminated data sets

and, in this respect, they are indistinguishable from the two uncontaminated tests.

(ii) In all contaminated tests, the second eigenvalue of the observed matrix is larger than its
expected counterpart. Consequently, their ratio is greater than unity, as predicted by
Drasgow & Lissak (1983). The ratio is a monotonically increasing function of p, the level
of contamination, and a monotonically decreasing functon of r, the inter-ability

correlation.

(iii) The ratio of the third pair of eigenvalues is also greater thar one. In fact, in most cases it
is greater than the second ratio. The third ratio is not systernatically related to r, the inter-
ability correlation, However, it increases monotonically as a function of p, the level of
contamination. The sharpest effect is obtained for highly (r=0.7) correlated, and the
weakest effect is found for uncorrelated (r=0.0) abilities.

RMPA

We performed an informal RMPA by examining the eigenvalues of the jacknifed parallel
matrices. Table 3 displays means, and standard deviations, of the first three eigenvalues
extracted from the jacknifed submatrices. All the values in the table are based on n=30
matrices of order (n-1)=79. Note that the mean values are related to the eigenvalues from table
2 through multiplication by a scale factor of n/(n-1)=80/79.
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Insert Table 3 about here

Table 4 presents ratios of the means, and the variances, of the three jacknifed eigenvalues of

the 20 tests.

.

Insert Table 4 about here

There is a close correspondence between these mean ratios and the ratios presented in table 2,
and the same three basic conclusions apply here, as well. The ratios of the variances follow a

similar, but not identical, pattern:

(i) The variances of the first eigenvalues are, on the average, very close to each other and their
ratio is close to unity. The only exceptions are the cases {r=0, p=50}, which represent

mixtures of two unidimensional half-tests involving uncorrelated abilities.

(ii) In most cases (and on the average) the variance of the second (jacknifed) eigenvalues in the
observed matrices is higher than in the expected one. The effect is most pronounced in the
case of the independent traits (r=0), and for moderate or high levels of contamination

(p=25 and 50, respectively).

(iii) In all 20 tests the variances of the third (jacknifed) eigenvalues are substantially higher in
the observed matrices. The effect is much stronger than for the second eigenvalue, but

there is no systematic pattern of change across levels and types of contamination.

Table 5 presents the correlations between the matched jacknifed eigenvalues for the 20 tests.

Each correlation is based on n=80 observations.

Insert Table S about here
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The pattern of results is clear and consistent with our expectations:

(i) There is a high (almost perfect) linear correlation for the first eigenvalue in most tests. The
single exception is the {Rep=R, r=0, p=50} case, which is a mixture of two uncorrelated

(unidimensional) half-tests.

(i) In all cases of moderate and high contamination (p=25 and 50, respectively) the

correlations based on the second and third eigenvalue are low, or aegative.

(iii) In most cases of low contamination (p=10) the correlations based on the second eigenvalue
are high (almost like for the first eigenvalue), but the correlations based on the third

eigenvalue are always low, or negative.

This pattern indicates that, as suggested by Drasgow and Lissak (1983) and others, the first
eigenvalues of the two parallel matrices are practically indistinguishable, across all types and
levels of contamination. However, contrary to Drasgow and Lissak's speculation, not all the
differences between the two data sets can be detected by comparing the second pair of
eigenvalues. The means, variances and correlations of the jacknifed values seem to suggest
that in some cases of low contamination (p=0.10) departure from unidimensionality can only

be detected by examining the third pair of eigenvalues.

Reiection Threshold

Table: 6 presents six rejection thresholds calculated from the distribution of the first ratio in the
20 tests. These six rejection thresholds are obtained by crossing two confidence levels (95%
and 99%) with three rules of detection — an empirical value, a valae calculated by the "tight"
(i.e. assuming unidimodality and symmetry) Chebyshev inequality, and a value derived from
the unconstrained Chebyshev inequality.

Insert Table 6 about here

In all tests, and for both confidence levels, the empirical percentile is more liberal than the
corresponding Chebyshev bounds. Thus, the three rules can be ranked, from the most to the
least conservative, identically for all tests and for both levels of confidence:

Unconstrained Chebyshev > Constrained Chebyshev > Empirical
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One remarkable and reassuring aspect of this table is the relatively low variance of the bounds
across the various conditions and replications. This indicates that the ratio of the first pair of
jacknifed eigenvalues has a relatively stable distribution across the levels and types of

contamination.

The most important issue, from a practical point of view, is to choose the "best" threshold for
detection of wide gaps. To address this issue we focus on the performance of the various
indices in the uncontaminated (p=0) case. Table 7 displays the proportion of SWGs exceeding
the various indices for the three ratios. Since this is a strictly unidimensional test, we expect
this proportion to be invariant for all three ratios and not to exceed its nominal confidence level
(95% or 99%). Clearly, the empirical percen’iles fail the invariance requirement and the 95%
constrained Chebyshev bound is too liberal for the third ratio. In light of these results we
conclude that is best to identify as "unusually wide gaps" those values that exceed the 95%
unconstrained, or the constrained 99% Chebyshev bounds. We will focus primarily on
rejections with 99% confidence. However, for completeness sake, we will report in the sequel

results according to all the thresholds.

Insert Table 7 about here

Partition of the T

Tables 8a - 8c list the maximal SWGs observed in the distributions of the three ratios for each
test. The tables also display the pattern of significance achieved by this maximal SWG, and its
location. The columns labeled "significance" simply count how many of the increasingly
stringent) thresholds were exceeded in each family of tests. In the 95% and 99% columns, a |

indicates that the observed value is greater than the empirical percentile lower than both

Chebyshev bounds; a value of 2 describes a situation where the actual value is greater than the
constrained (but smaller than the unconstrained) Chebyshev bound, and a value of 3 denotes a
case where the maximal gap is larger than the most severe rejection rule. Our previous results

(see table 7) dictace to interpret as "significant” values of 2 (at 99%), or values of 3 (at 95%).

The location of the gap is described by reporting the number of items above, and below, it.

Recall that according to the logic of RMPA the contaminating items should have lower (i.e.

closer to unity) ratios. We rank ordered the ratios in ascending order, so these items are

expected to cluster "above" the gap. As a rule, we expect the proportion of item above the gap
Q to match, approximately, the proportion of contamination in the specific test.
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We reject the null hypothesis of unidimensionality if:

(1) The number of items "above the gap” < /2 AND
(2) The Maximal SWG of the second AND/OR the third ratio is greater than the designated

rejection threshold.

We examine three rejection rules with decreasing levels of conservatism: (1) 99% according to
an unconstrained Chebyshev inequality, (2) 99% according to a constrained Chebyshev

inequality, and (3) 95% according to the unconstrained Chebyshev inequality.

Insert Tables 8a - 8¢ about here

As expected, there are no significant gaps in the distribution of the first ratio but, in most tests,
the largest SWG in the distribution of the second and/or third ratio is significant. We examine

these significant gaps according to the three valid rejection thresholds:

All six cases with low (p=10) contamination are significant at the 99% level (five of them by
the most severe criterion). In all six cases the gap separates the top 10% items from the bottom

90%. It appears that the procedure works well for this type of contamination.

Only three of the highly contaminated tests (p=50) are significant at 99%. More important,
however, is the fact that in all six tests the widest gap is located at the bottom of the
distribution. Although the numbers vary slightly across tests, the proportion of items above
the gap is always greater than 80%. Clearly, the gap test does not work well for a mixture of
two half tests. '

The pattern of results is slightly more complex in the case of moderate (p=25) contamination,
and it depends on the level of the inter-ability correlation: For both tests with uncorrelated
(r=0) abilities, and one of the tests with moderately correlated (r=0.5) abilities, the significant
gap (99%) in the distribution of the second ratio separates the upper 25% items from the rest of
the test. In the other test with r=0.5 the gap between the top 25% of the items and the lower
75% is significant at the 95% level. Finally, for the tests involving highly correlated abilities
(r=0.7), the maximal gap is located at the lower end of the distribution (69 and 72 items above
the gap). In both cases the second largest gap distinguishes between the (most) contaminating
items and the original ones. Thus, the gap test operates well only for cases with low inter-
ability correlations.
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To summarize, RMPA found a significant gap in the distribution of the ratios of matched
eigenvalues in all the tests examined. In 14 tests the gap was significant at 99% and in the
other six at $5%. A significant gap located in the upper half of the distribution (i.e. with fewer
items above the gap than bellow it) is taken as a strong indication of violation of
unidimensionality and prescribes elimination of all items above the gap. The ten tests
identified by this criterion include all those with low contamination (p=10), as well as the

moderately contaminated ones (p=25), with moderate level of inter-ability correlation (r <0.7).

In the sequel we focus only on these 10 shortened tests. Plots of the 10 relevant distributions
of standardized weighted gaps (not presented here because of space limitations), clearly show
that:

(i) the contaminating items are clustered at one end of the distribution, and
(ii) there is an unusually large gap separating this cluster from the bulk of the items. This gap
can be detected in the raw gaps, but it is more pronounced in the standardized weighted

form.

The quality of the technique is assessed by its ability to detect the contaminating items and
remove them, while retaining the original ones. Table 9 summarizes this analysis for the 10
short tests. For each one we report the hit rate (i.e. contaminating items rejected correctly)
and the false alarm rate (i.e. original items rejected incorrectly). The figures are very
impressive ---- for all the tests with p=10%, the hit rate is 100% and for the tests with p=25%
it is 95%. Both figures are accompanied by false alarm rates close to 0.

Insert Table 9 about here

R i ation of the s} I
Having shortened 10 tests according to the results of the initial RMPA we repeated the
procedure. The second iteration verifies the unidimensionality of the shortened tests: If the
first stage is successful in removing all sources of contamination, we do not expect to detect

any significant gaps in this second round.

Tables 10 and 11 report the results of the MPA and the RMPA of the shortened tests. A quick
comparison with tables 2 and 4 (summarizing the same results for the original full tests)

reveals that all major sources of multidimensionality were eliminated. The ratios of the second
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eigenvalues, and the ratios of their variances, are close to unity (We assume that a heuristic
MPA would also declare all these tests unidimensional). The third ratios are somewhat higher

but are, considerably, lower than those of the original tests.

Insert Tables 10 and 11 about here

The SWGs of the remaining items were calculated, new rejection thresholds were derived, and

the gap test was applied again S,

The only significant gap was found in the {Rep=B r=0.7 p=10} test. In this case the second
iteration of the RMPA prescribes removal of five additional items. All contaminated items
were successfully detected by the first iteration so these are five "false alarms". The final test

consists of 66 unidimensional items (instead of 72).
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SUMMARY

The goal of the current research was to develop a practical, yet theoretically sound and
computationally feasible, tool for testing the global dimensionality of large item pools and
eliminating items which cause violations of the pool's unidimensionality. Both goals are

attained in the unified framework of revised modified parallel analysis (RMPA).

RMPA is an extension and generalization of the modified parallel analysis (MPA) method that
was developed by Drasgow and Lissak (1983) as an approximate method for testing the
unidimensionality of item pools. MPA replies on a heuristic comparison of a statistic (the
second eigenvalue) derived from the matrix of items' intercorrelations and the corresponding
value extracted from a “parallel" matrix generated by a unidimensional, and locally

independent, model (in our case the three parameter logistic model).
RMPA is based on a similar comparative logic, but improves upon MPA in several ways:

(1) It alleviates some minor technical limitations, through the use of expected inter-item
correlations and item communalities. While in MPA the inter-item correlations are
generated by a randomized procedure, in RMPA their expected values are derived
theoretically under the exact assumptions of the 3-P logistic model.

(2) It implements a formal test for comparing the observed data set with its parallel (and
unidimensional) counterpart. The test is based on inspection of the ratio of the k'th
eigenvalue of the observed intercorrelation matrix to that of the expected matrix. The ratios
for the second and third eigenvalues are compared with the ratio of the first eigenvalue
which serves as a benchmark. In case of a unidimensional data set, all three ratios should
be of equal magnitude. Violations of unidimensionality are manifested in larger observed/
expected ratios of the second and third eigenvalues relative to that of the first.

(3) Contingent upon the results of this test, it provides a method for identifying and
eliminating items which violate the test's unidimensionality.

The testing and elimination procedures are based on the "eliminate one item at a time"
principle. This methodology allows one to assess the contribution of each item to the test's
eigenvalues. Furthermore, one can determine the variance and distribution of these values and
analyze the differential impact of any given item in the observed and parallel matrices. Items
which have a "significantly” larger impact in the observed data set violate unidimensionality.
The detection of these items relies on a conservative version of Wainer & Schacht's (1973)
"gapping" test.
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The lagest (first) eigenvalues of the observed a.d expected matrices are practically identical in
all cases, regardless of the level of correlation between the two abilities and the degree of
contamination. Therefore, we used the distribution of their ratio to determine rejection
thresholds for the ratio of the second and third eigenvalues. These thresholds are based on
conservative Chebyshev bounds, and are specifically tailored to each data set.

RMPA was tested in several simulations of unidimensional item pools which were
contaminated by various proportions of items loaded on a secondary nuisance ability. The
method was highly successful in identifying low (10%) levels of departure from
unidimensionality, and in detecting moderate (25%) deviations from unidimensionality when
the abilities were not highly (r < 0.7) correlated. In these cases over 90% of the contaminating
items were identified and less than 1% of the original items were eliminated erroneously. The
procedure failed however, in tests which are easily detecfed as multidimensional by the MPA

method, namely tests which are equal mixtures (50%) of items loaded on two abilities.

The two methods, MPA and RMPA, can be regarded as complementing each other. Clear
cases of multidimensionality can be easily detected by inspecting the observed/expected ratio of
the second eigenvalue but the gapping test is unable to separate between the two
(unidimensional) sub-pools. Paradoxically, in cases of multidimensionality which are not
easily detected by the magnitude of the ratio, the gapping test not only detects the presence of
nuisance ability factor but also ideatifies the contaminating items. The findings of this study
suggest that practical application of RMPA should proceed in two stages. In the first stage, the
ratio of the second eigenvalues (observed/expected) should be inspected. In the second stage
of the analysis the gapping test is applied. The decision as to the unidimensionality of the data
set is determined by a conjunction of the resuits from both stages. Therefore, the
unidimensionality hypothesis should be rejected if the results of either stage indicate
multidimensionality. Large ratio (in the first stage) combined with nonsignificant gaps (in the
second stage) most probably indicate a case of a multidimensional data set with close to equal
proportions of items loaded on each ability factor.

It remains to be proved whether RMPA is as effective in separating out iterns that load on more

than two factors and, more generally, whether the procedure is applicable to other factor
structures.

We conclude by pointing out that the logic of MPA and RMPA can be generalized to other
statistics of closeness between the two data sets. For example, it might be interesting to apply
it to indices derived from non linear factor analysis (e.s. McDonald, 1982).
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FOOTNOTES

Strictly speaking "jacknifing" refers to an analysis in which observations (i.e. respondents)
are eliminated one at a time from the sample. In this case, we eliminate variables (items) in
a similar fashion. Several item analysis computer programs use a similar approach in order
to identify subscales with maximal reliability.

I, the sample influence function (Devlin, Gnanadesikan and Kettenring, 1975; Hampel,
1974) of parameter, T, is given by:

= (@-1)(T - T,),

where 1 is the number of items, and T _ is an estimate of the parameter T obtained after the
elimination of item i. Note that [ is, simply, a linear transformation of T .

Strictly speaking, Chebyshev inequality requires knowledge of the parameters (mean and
variance) of the population of interest. However, Saw, Yang and Mo (1984) have shown
that sample estimates of these parameters can be used, with very little loss of precision, in
moderately large samples.

Occasionally a large (and significant) gap will be detected in the lower tail of the
distribution, i.e. separating the bulk of the data from a minority of items with unusual low
ratios of observed/expected jacknifed eigenvalues. Clearly, these cases are not relevant for
our hypothesis.

Since the procedure is data driven, we opt not to use the thresholds values employed in the
first stage. Thus, when analyzing a test consisting of (n - m,) items one should obtain the
same results, and reach the same conclusions, whether it is treated as "an original” or "a
reduced” test.
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Means, standard deviations and correlations of the two sets of item parameters

Rep=B Rep=R

Parameter n Mean Std. Dev. Parameter n Mean Std. Dev.
a 80  1.123  0.245 a 80 1328 0511
b 80 0.172 0.873 b 80 -0.026 0.985
c 80 0.202 0.057 c 80 0.161 0.098

Correlations Correlations
a b c a b c

a 1.000 0.090 -0.196 a 1.000 0518 0.397
b 0.090 1.000 -0.260 b 0.518 1.000 0.754
c -0.196 -0.260 1.000 c 0.397 0.754 1.000
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Table 2:

Modified Parallel Analysis (MPA) of 20 tests:
The first three eigenvalues for the observed and
expected matrices, and their ratios

Eigenvalue | Eigenvalue 2 Eigenvalue 3
Rep r p Exp Obs Obs/Exp Exp Obs Obs/Exp Exp Obs Obs/Exp
B - 0 2434 25.10 1.03 1.79 1.78 0.99 0.17 0.67 4.02
B 00 10 2203 2271 1.03 1.62 2.55 1.58 0.17 1.66 9.72
B 00 25 1815 18.80 1.04 1.43 559 392 0.15 1.53 10.17
B 00 50 1193 1258 105 0.61 12.01 19.77 0.08 0.85 10.35
B 05 10 2272 2355 104 1.66 178 1.07 0.18 1.66 9.13
B 05 25 1993 2077 104 = 146 387 265 0.16 154 9.75
B 05 50 1776 1871 1.05 092 6.05 6.60 0.07 1.07 14.33
B 07 10 2331 2416 104 1.66 173 1.04 0.18 126 7.09
B 07 25 2127 2213 104 146 230 1.58 0.15 1.55 10.51
B 07 50 1991 2082 105 1.18 3.67 3.1 0.09 134 14.26
R - 0 2620 2623 100 347 322 093 0.36 063 1.78
- R 00 10 2359 2384 101 284 286 10l 0.25 2.57 10.20
R 00 25 1957 1981 101 2.38 620 2.60 0.20 2.33 1191
R 0.0 50 1223 1290 1.05 1.45 12.20 8.39 0.15 1.77 11.53
R 05 10 2368 2414 1.02 276 276 1.00 028 190 6.69
R 05 25 2145 2190 1.02 248 431 174 0.25 245 9.70
R 05 50 1930 1988 1.03 1.79 6.35 3.55 0.13 193 14.39
R 07 10 2445 2486 102 2.38 2.87 100 030 1.18 4.0l
R 07 25 2291 2330 102 264 3.16 120 023 2.28 10.09
R 07 50 2178 2225 102 232 389 1.68 0.17 239 14.17 |

Notes:

All results based on n=80 items and N=2000 respondents.
Exp = Derived from matrix of expected correlations

Obs = Derived from matrix of observed correlations.
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Table 3:

Revised Modified Parallel Analysis (RMPA Aof 20 tests:
Means and standard deviations of the first three eigenvalues of the Jacknifed
submatrices (observed and expected)

Rep r p  Source Mean SD Mean SD Mean SD
B -0 Exp 24.036 0.122 1.764 0.029 0.165 0.004
Obs 24.786 0.118 1.756 0.027 0.664 0.009
B 0.0 10 Exp 21.752 0.145 1.598 0.026 0.168 0.004
Obs 22.429 0.147 2.515 0.103 1.637 0.027
B 0.0 25 Exp 17.920 0.163 1.409 0.027 0.148 0.004
Obs 18.563 0.169 5.519 0.143 1.507 0.027
B 0.0 50 Exp 11.778 0.136 0.600 0.013 0.081 0.002
Obs 12.432 0.158 11.842 0.165 0.842 0.016
B 05 10 Exp 22.437 0.133 1.640 0.027 0.179 0.004
Obs 23.255 0.128 1.769 0.036 1.630 0.038
B 05 25 Exp 19.685 0.136 1.443 0.026 0.156 0.004
. Obs 20.507 0.128 3818 0.084 1.525 0.027
B 0.5 50 Exp 17.536 0.089 0.906 0.014 0.073 0.002
.. Obs 18.472 0.085 5.972 0.035 1.053 0.019
B 07 10 Exp 23.023 0.125 1.640 0.026 0.175 0.004
Obs 23.858 0.119 1.713 0.025 1.241 0.043
B 0.7 25 Exp 21.008 0.126 1.437 0.024 0.145 0.003
Obs 21.850 0.122 2.267 0.048 1.526 0.027
B 0.7 50 Exp 19.660 0.103 1.164 0.019 0.093 0.002
Obs 20.564 0.101 3.625 0.025 1.326 0.021
R - 0 Exp 25.874 0.128 3424 0.040 0.351 0.006
Obs 25.899 0.132 3.178 0.036 0.628 0.007
R 0.0 10 Exp 23292 0.155 2.808 0.040 0.249 0.006
Obs 23.547 0.160 2.829 0.035 2.531 0.113
R 00 25 Exp 19.330 0.174 2.354 0.039 0.193 0.005
Obs 19.561 0.182 6.121 0.149 2.301 0.035
R 0.0 S0 Exp 12.078 0.142 1.436 0.031 0.152 0.004
Obs 12.735 0.187 12.045 0.175 1.751 0.037
R 05 10 Exp 23.389 0.141 2.726 0.038 0.281 0.006
Obs 23.835 0.138 2.726 0.034 1.876 0.078
R 05 25 Exp 21.181 0.152 2.449 0.038 0.249 0.006
Obs 21.629 0.143 4251 0.084 2.415 0.035
R 0.5 50 Exp 19.063 0.107 1.763 0.023 0.128 0.004
Obs 19.636 0.101 6.263 0.037 1.906 0.025
R 07 10 Exp 24.145 0.136 2.839 0.038 0.291 0.006
Obs 24.552 0.132 2.855 0.033 1.166 0.043
R 07 25 Exp 22.627 0.138 2.605 0.037 0.223 0.005
Obs 23.006 0.132 3.123 0.040 2.252 0.033
R 0.7 50 Exp 21.504 0.118 2292 0.030 0.166 0.004
Obs 21.970 0.116 3.843 0.027 2.357 0.030

Notes:
All results based on n=80 items and N=2000 respondents. ,
Q Exp = Derived from matrix of expected correlations 33

ERIC Obs = Derived from matrix of observed correlations.
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Revised Modified Parallel Analysis (RMPA) of 20 tests:
Ratio of means and variances of eigenvalues of the jacknifed submatrices

(Ratio = observed / expected)

Eigenvalue | Eigenv Eigenvalu !
Rep r p Mean Var Mean  Var Mean Var. |
|
B - 0 1.031  0.933 0995 0.884 4030 6.007 |
B 00 10 1.031  1.034 1.574 15.449 9.730  44.102 |
B 00 25 1.036 1.074 31917 28.726 10.187 52.047
B 00 50O 1056  1.355 19.748 151,159 10350 83.432 |
B 05 10 1.036  0.920 1.078  1.779 9.084 80.253 |
B 05 25 1042 0.885 2.646 10.454 9763 44.765 !
B 05 350 1.053  0.909 6.594  5.886 14379 133.295 |
B 07 10 1.036 0916 1.045  0.908 7.086 116.778 |
B 07 25 1.040 0934 1.578  3.836 10.524 62910 |
B 07 50 1.046 0955 3.114  1.681 14278 92.026 |
R - 0 1.001  1.054 0928  0.804 1790  1.296
R 00 10 1011 1.067 1008  0.776 10.183 370.061 .
R 00 25 1012 1.094 2600 14.554 11.918 53.081 |
R 00 350 1.054  1.746 8387 31.775 11527 78.033 .
R 05 10 1019 0946 1.000  0.786 6.685 165.024 .
R 05 25 1.021  0.888 1736  4.773 9.705 36.368 |
R 05 50 1030  0.892 3554  2.554 14892 45.144 |
R 07 10 1017 0944 0999  0.770 4004 44388 |
R 07 25 1.017 0916 1.199  1.205 10.082 42.093 |
R 07 S0 1.022  0.966 1677  0.763 14.166 68.059
Notes:

All results based on n=80 items and N=2000 respondents.

34




-34 -

Table 5: .

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Correlations of eigenvalues of the observed and the expected jacknifed submatrices

Repr p Evl Ev2 Ev3 Repr p Evl Ev2 Ev3

B - 0 0996 0.888 0.650 R - 0 0976 0.956 0.195
B 0.0 10 0995 -0.237 0.603 R 0.0 10 0.995 0.963 -0.147
B 00 25 0996 -0337 0.655 R 0.0 25 0.996 -0414 0.306
B 0.0 50 0981 -0459 -0.049 R 00 50 -0.641 0.537 0.321
B 05 10 0997 -0256 0.299 R 05 10 0598 0968 -0.129
B 05 25 0998 -0320 0.593 R 05 25 0996 -0320 0.3%4
B 05 50 099 -0.180 0310 R 05 50 0996 -0.007 0.218
B 07 10 0997 0.863 -0.111 R 07 10 0998 0968 -0.111
B 07 25 0996 -0.311 0.608 R 07 25 0995 0350 0.140
B 07 50 0997 -0.206 0.508 R 0.7 50 0.996 0.060 0.127

Notes:
All results based on n=80 items and N=2000 respondents.
Ev = Eigenvalue

o 35
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Table 6:

Revised Modified Parallel Analysis (RMPA) of 20 tests:

Six detection thresholds based on the distribution of the standardized
Weighted Gaps (SWGs) based on the ratio of the first observed and expected
jacknifed eigenvalues

Threshold
SWG 95 % 99 %
Rep r P Mean S.D. Emp UChe Cheb Emp UChe Cheb
B - 0 094 049 1.89 242 3.17 2.38 424 588
B 0.0 10 091 0.58 1.94 2.67 3.54 2.58 481 676
B 0.0 25 097 0.52 1.96 2.54 3.32 2.87 4.45 6.19
B 00 50 084 056 2.07 2.53 337 3.09 459  6.46
B 05 10 090 042 1.61 2.15 277 1.92 3.67  5.06
B 05 25 096 053 - 2.01 2.56 3.36 2.93 452 630
B 05 50 097 05l 1.84 2.50 3.26 2.26 437 607
B 0.7 10 098 0.0 1.89 2.48 323 2.80 431 597
B 07 2 095 0.57 2.13 2.65 3.50 2.66 473  6.61
B 07 S50 089 052 1.92 2.45 3.23 213 435  6.08
B Mean 093 0.52 1.93 249 3.27 2.56 440  6.14
) R - 0 095 044 1.65 2.27 2.93 2.12 389  5.36
R 0.0 10 099 056 1.85 2.66 3.50 3.40 472  6.58
R 00 25 094 054 1.90 2.56 3.37 2.65 454 633
R 00 50 079 051 1.77 2.30 3.06 2.47 416 584
R 0.5 10 099 048 1.82 242 3.14 1.93 418 578
R 05 25 095 0352 2.03 2.52 331 2.24 444  6.18
R 05 50 093 053 1.82 2.53 3.33 3.00 448  6.25
R 07 10 1.07 0.61 2.16 2.90 381 2.87 5.12 7.14
R 07 25 092 045 1.95 2.28 2.95 2.23 393 543
R 07 S0 096 047 1.85 2.38 3.09 2.03 412 570
R Mean 095 051 1.88 2.48 3.25 2.49 435  6.06
Mean 094 052 1.90 2.49 3.26 2.53 438  6.10
Notes:

All results based on n=80 items and N=2000 respondents.
Emp = Empirical distribution

UChe = Chebyshev bound assuming unimodality

Cheb = Chebyshev bound
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Table 7:

Revised Modified Parallel Analysis (RMPA):
Proportion of Standardized Weighted Gaps (SWGs) exceeding each of the six
thresholds in the uncontaminated unidimensional test

Threshold
95 % 99 %
Eigenvalue Emp UChe Cheb Emp UChe Cheb
l 0.051 0.000 0.000 0.013 0.000 0.000
2 0.177 0.063 0019 0.070 0.006 0.000
3 0.215 0.108 0.038 0.120 0.006 0.000
Mean 0.148 0.057 0.019 0.068 0.004 0.000

Notes:
- All results based on n=8C items and N=2000 respondents.
Emp = Empirical distribution
UChe = Chebyshev bound assuming unimodality
Cheb = Chebyshev bound




.37 -

Table 8a:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds (First eigenvalue)

‘ Significance* No. of items

Rep r p Gap Max(SWG) 95% 999%  Below Above
B - 0 0.00007800 2.37665 1 1 40 40
B 00 10 0.00011536 2.58303 1 1 29 51
B 00 25 0.00017863 2.87133 2 1 52 28
B 00 50 0.00074733 3.09437 2 1 46 34
B 05 10 0.00007026 1.92493 1 1 42 38
B 05 25 0.00023166 2.93434 2 1 20 60
B 0.5 50 0.00011191 2.25905 1 1 49 31
B 07 10 0.00011347 2.80103 2 1 35 45
B 0.7 25 0.00059257 2.66357 2 1 76 4
B 07 50 0.00035381 2.12819 1 1 76 4
R - 0 0.00013665 2.12450 1 1 30 50
R 00 10 0.00083803 3.39892 2 1 4 76
R 0.0 25 0.00019422 2.65083 2 1 22 58

| R 0.0 50 0.00513373 2.47295 2 1 40 40
R 0.5 10 0.00004417 1.92817 1 1 33 47
R 05 25 0.00010552 2.24198 1 1 38 42
R 05 50 0.00017510 2.99795 2 1 28 52
R 07 10 0.00010866 2.87002 1 1 16 64
R 07 25 0.00009185 2.22529 1 1 33 47
R 07 50 0.00017596 2.02883 1 1 7 73

*Note:

1 --> Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality
3 --> Max(SWG) > Chebyshev
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Table 8b:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
types of thresholds (Second eigenvalue)

Significance* No. of items

Rep P Gap Max(SWG) 95% 99% Below Above
B - 0 0.002948 4.6028 3 2 13 67
B 00 10 0.154001 10.3842 3 3 72 8*
B 00 25 0.058056 5.5693 3 2 61 19*
B 00 50 0.420034 29129 2 0 6 74
B 05 10 0.061734 7.9202 3 3 72 g*
B 05 25 0.020733 3.9763 3 1 62 18*%
B 05 50 0.016864 2.7078 2 1 30 50
B 07 10 0.017799 3.6832 3 1 78 2
BE 07 25 0.017849 4.2707 3 1 64 16
B 07 50 0.061186 2.6536 2 1 3 77
R - 0 0.002074 2.6308 2 1 4 76
R 00 10 0.001358 3.1794 2 0 10 70
R 00 25 0.041428 5.1730 3 2 60 20*
R 00 50 0.063916 7.3824 3 3 15 65
R 05 10 0.002657 2.7704 2 l 4 76
R 05 25 0.032784 6.7929 3 3 61 19*
R 035 50 0.027717 3.0870 2 1 7 73
R 07 10 0.000493 2.7074 1 0 23 57
R 07 25 0.005675 2.7842 2 1 71 9
R 07 50 0.005415 2.7835 2 1 19 61

*Note: :

1 --> Max(SWG) > Empirical percentile
2 --> Max(SWG) > Chebyshev + unimodality
3 --> Max(SWG) > Chebyshev

39




-39 -

Table 8c:

Revised Modified Parallel Analysis (RMPA) of 20 tests:
Maximal Standardized Weighted Gap (SWG) and significance according to three
rypes of thresholds (Third eigenvalue)

v
|
|

Significance* No. of items

[£]
o
-
]

1

I

Gap Max(SWGQG) 95% 99% Below Above|

‘ o

|

!B - 0 0.197155 5.0647 3 2 278

B 00 10 0.407039 3.5361 2 1 L 79 |

B 00 25 0.087976 4.3483 3 1 9 71 |

B 00 50 0.065372 3.5205 3 1 12 68

B 05 10 0.110290 3.4420 3 L 73 7

B 05 25 0.138565 4.4914 3 1 6 74 |

B 05 50 0.237589 5.5091 3 2 9 71 !

B 07 10 0.184939 7.1549 3 3 71 9% |
B 07 25 0.140215 5.1461 3 2 8 72
B 07 50 0.116452 3.3573 3 L 7 73
R - 0 0.013257 3.6044 3 1 9 71
R 00 10 0.419092 9.4241 3 3 72 8*
R 00 25 0.115029 4.1520 3 1 10 70
R 00 50 0.225673 8.3301 3 3 10 70
R 05 10 0.287058 10.3919 3 3 72 g*
R 05 25 0.118107 5.3490 3 2 12 68
R 05 50 0.464085 4.3802 3 1 3 77
R 07 10 0.111553 6.4281 3 2 72 g*
R 07 25 0.072746 3.5625 3 1 11 69
R 07 50 0.272261 4.7821 3 2 7 73

*Note:

1 --> Max(SWG) > Empirical percentile
2 --> Max(SWQ@) > Chebyshev + unimodality
3 --> Max(SWG) > Chebyshev
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Table 9:

Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Total number of items eliminated and accuracy of the elimination procedure

[tems eliminated
Rep r p Total % of % of Significant
‘ “hits" "false alarms" Eigenvalue
B 0.0 10 8 1060 0 2
B 0.5 10 8 100 0 2
B 0.7 10 9 100 1 3
R 0.0 10 8 100 0 3
R 0.5 10 8 100 0 3
R 0.7 10 8 100 0 3
Mean 8.2 100 0.2 -
B 0.0 25 19 95 0 2
*B C.5 25 18 90 0 2
R 0.0 25 20 100 0 2
R 0.5 25 19 95 0 2
Mean 19 95 0
Mean - 98 0.1
Note:

Tests shortened by 99% criterion
* These tests shortened by a 95% criterion
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Table 10:

Modified Parallel Analysis (MPA) of 10 short tests:
The first three eigenvalues for the observed and expected matrices, and their ratios

i !

! Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 l
|
Reprt p Exp Obs Obs/Exp Exp Obs Obs/Exp Exp Obs Obs/Expi
B 00 10 218 2271 1.04 162 1.65 1.02 0.17 062 3.64
B 00 25 17.89 1878 1.05 142 1.48 105 0.14 056 3.86
B 05 10 2195 2271 103 165 1.65 1.00 0.18 0.62 3.51
B 05 25 18.00 1885 1.05 140 149 1.06 0.15 0.58 3.89
i B 0.7 10 2149 2227 104 1.58 1.61 1.01 0.17 062 3.63 |
R 00 10 2335 2384 1.02 284 2.85 1.01 025 054 2.19
R 00 25 19.17 19.79 1.03 237 230 098 0.19 0.50 2.63
R 05 110 2279 2321 1.02 270 271 1.00 028 058 2.10
R 05 25 1927 1973 1.02 233 245 1.05 024 053 221
R 07 10 2283 2321 1.02 273 2.71 099 0.28 058 2.04
Notes:

All results based on N=2000 respondents, and various number of items.
Exp = Derived from matrix of expected correlations
Obs = Derived from matrix of observed correlations.

Table 11:

Revised Modified Parallel Analysis (RMPA) of 10 short tests:
Ratio of means and variances of eigenvalues of the jacknifed submatrices
(Ratio = observed / expected)

Eigenvalue | Eigenvalue 2 Eigenvalue 3
Rep r P Mean Var Mean  Var Mean Var
B 00 10 1039 0.928 1.023  1.066 3.660 5.473
B 00 25 1.049 0.923 1.046  1.032 3.889  4.006
B 05 10 1.035 0922 1.005 0.983 3.526  5.112
B 05 25 1.047 0959 1.064  1.065 3913  6.538
B 0.7 10 1.036 0.919 1.015 1072 3.641  5.785
R 00 10 1021 0975 1.005 0816 2202 1.152
R 00 25 1.033  0.947 0976 0.760 2.648  1.670
R 05 10 1.018  0.960 1.001  0.785 2.107  1.299
R 05 25 1.024  0.997 1.054 0.863 2227 1418
R 07 10 1.017  0.949 0.991 0772 2.047 1.102 |
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